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Abstract
So far calculations of the spin susceptibility in the superconducting state
of cuprates have been performed in the framework of weak-coupling
approximations. However, it is known that cuprates belong to Mott–Hubbard
doped materials where electron correlations are important. In this paper an
analytical expression for the spin susceptibility in the superconducting state
of cuprates is derived within the singlet-correlated band model, which takes
into account strong correlations. The expression of the spin susceptibility is
evaluated using values for the hopping parameters adapted to measurements
of the Fermi surface of the materials YBa2Cu3O7 and Bi2Sr2CaCu2O8. We
show that the available experimental data which are directly related to the spin
susceptibility can be explained consistently within one set of model parameters
for each material. These experiments include the magnetic resonance peak
observed by inelastic neutron scattering and the temperature dependence of
nuclear magnetic resonance properties like the spin shift and the spin–spin and
spin–lattice relaxation rates in the superconducting state.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Derivations of theoretical expressions for the dynamical spin susceptibility of layered cuprates
have been in the focus of many investigations, since several experimental quantities are
directly related to the spin susceptibility. A large number of data sets of the temperature
dependence of various nuclear magnetic resonance (NMR) quantities exist. The Knight shift
and the spin–spin and the spin–lattice relaxation rates probe the low-energy limit of the spin
susceptibility. Inelastic neutron scattering (INS) measurements in contrast reveal the behaviour
of the susceptibility at higher energies. The most complete set of experimental data has been
obtained for the YBaCuO compounds.
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The theoretical approaches to the spin susceptibility can be divided into two categories,
the weak- and strong-coupling models. The former deal with a single-band Hubbard model
with the effective Coulomb interaction Ue taken to be of the order of the bandwidth in
cuprates. Based on this assumption, the dynamical spin susceptibility can be calculated
within a standard random phase approximation (RPA) approach. Extensive studies of
NMR and INS data have been carried out within the framework of this model by several
groups [1–6]. Initially, the features observed by INS were addressed by Onufrieva et al
[7, 8] and later by Brinckmann and Lee [9]. However, in both cases the expression for
the spin susceptibility was reduced to the conventional RPA-like form which is a crude
approximation due to the composite nature of the quasiparticles (no double occupancy
constraint).

Recently, a number of studies have been devoted to analysing the spin susceptibility within
the strong-coupling t–J model, for which standard many-body perturbative methods do not
work. For example the dynamical spin susceptibility was analysed within the slave–boson
approximation [10], the Mori–Zwanzig memory function formalism [11] and with the Hubbard
X -operators technique [12, 13]. It has been found that, to a large extent, both weak- and
strong-coupling calculations give formally very similar results for the spin susceptibility. The
respective parameter values, however, differ drastically. Until now, there has also been no
complete understanding whether both INS and NMR data can be explained consistently within
one model and using the same parameter values of the given theory.

In the present work we analyse these questions in detail. Starting from the singlet-
correlated band model, we use a well established decoupling procedure of the equations
of motion and approximate higher-order correlation functions so as to obtain an analytical
expression for the dynamical spin susceptibility which takes into account strong correlations. In
the normal state it coincides with the expression obtained already by Hubbard and Jain [14] who
extended their original model to account for strong correlation effects. Their result differs from
the conventional Pauli–Lindhard form. Later, Zavidonov and Brinkmann [12] incorporated
an additional functional correction for the lower Hubbard sub-band (LHB) model, which also
accounts for local spin fluctuation effects. Both of these corrections cannot be included exactly
in the RPA approach.

In the present paper we extend the previous analysis and present an analytical
expression for the dynamical spin susceptibility in the upper Hubbard sub-band (UHB) in
the superconducting state. We perform an extended numerical evaluation of this analytical
expression and find that most of the available experimental data which are directly related
to the spin susceptibility can be explained consistently within one set of model parameters.
These experiments include the magnetic resonance peak observed by INS and the temperature
dependence of the NMR spin shift and the spin–spin and the spin–lattice relaxation rates,
measured in the superconducting state. Note that in our analysis we restrict ourselves to
optimally doped high-temperature superconductors, since the pseudogap phenomenon cannot
be explained within our model. Furthermore, in our analysis we take advantage of other
available experiments, like the Fermi surface topology that is determined by high-resolution
angle-resolved photoemission for various cuprate superconductors. Assuming a dx2−y2 -
wave pairing symmetry, we propose an optimal set of parameters for the YBa2Cu3O7 and
Bi2Sr2CaCu2O8 compounds.

This paper is organized as follows. In section 2 we introduce the model system and
present the analytical expression for the spin susceptibility in the superconducting state of
cuprates. In sections 3 and 4 we study the spin susceptibility in the singlet-correlated band
model by analysing experiments in the superconducting state of the materials YBa2Cu3O7 and
Bi2Sr2CaCu2O8. A summary and conclusions are given in section 5.
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2. Dynamical spin susceptibility in the singlet-correlated band model

The starting point for our calculation is the model Hamiltonian [13, 15]

H =
∑

i, j,σ

ti jψ
pd,σ
i ψ

σ,pd
j +

∑

i> j

Ji j

[
(Si S j )− ni n j

4

]
+

∑

i> j

Vi jδiδ j , (1)

where ψ pd,σ
i (ψ

σ,pd
i ) are composite copper–oxygen creation (annihilation) operators of the

copper–oxygen singlet [16] states in the CuO2-plane. Furthermore, Ji j is the superexchange
parameter of the copper spins (this coupling originates from the virtual hopping from the LHB
to the UHB via the oxygen state). The number of doped holes is described by δi = ψ

pd,pd
i and

Vi j is an effective density–density interaction parameter. This parameter allows us to account
for the screened Coulomb repulsion and phonon (or plasmon) mediated interactions, and it
also determines the behaviour of the charge susceptibility which was calculated in the normal
state in [13]. However, it can be neglected for the spin susceptibility because the spin operator
commutates with this density–density operator.

We would also like to mention the key difference between the widely known t–J model
and the singlet-correlated band model. The conductivity band in the t–J model is constructed
on the basis of the dx2−y2 copper state and the Cu3+-states are included via the superexchange
parameter J . In other words the conductivity band is the lower Hubbard sub-band, which is
assumed to be completely filled in the parent compounds of high-temperature superconductors.
In the singlet-correlated band model the carriers move over the oxygen sites, which is based on
experimental evidence [17]. The spins of the oxygens are strongly correlated (singlets) with the
copper spins [16, 18], forming a band mainly on the basis of the so-called Zhang–Rice singlets.
This singlet-correlated band does not exist in the undoped parent compounds, because of lack of
additional doped oxygen holes in the insulating phase. Furthermore, this band is analogous to
an upper Hubbard sub-band, with the exception that the energy difference between this singlet-
correlated band and the lower Hubbard sub-band is only 1 eV (the copper–oxygen coupling
energy), instead of the 6–8 eV in the original Hubbard theory. For a more detailed discussion of
the Hubbard and singlet-correlated band models and their band structures see [19] (in particular
figures 7–9 therein). We will derive in this section an expression for the spin susceptibility in
this upper Hubbard sub-band model which is different from the t–J model.

The susceptibility is calculated from the general expression

χ+−(q, ω) = −2π i
〈〈

S+
q

∣∣S−
−q

〉〉
, (2)

where the spin density operator S+
q for the singlet-correlated band is written as

S+
q =

∑

i

ψ
↑,↓
i e−iqRi �

∑

k

ψ
↑,pd
k+q ψ

pd,↓
k . (3)

Here we may drop all the quasiparticle creation (annihilation) operators ψ
0,σ
i (ψ

σ,0
i )

corresponding to the LHB, because this band is assumed to be completely filled.
The expression for the susceptibility is derived by the following procedure. First,

we write down a complete set of equations of motion using the composite copper–oxygen
creation (annihilation) operators ψ pd,σ

i (ψ
σ,pd
i ) of the copper–oxygen singlet states in the plane.

Then, by means of a linear transformation we rearrange these equations via Bogoliubov’s
quasiparticle operators into new sets of equations, which finally will be solved. An expression
for the susceptibility was previously derived [15] by utilizing the method of Heisenberg
equations of motion in a small magnetic field. The advantage of the Green’s function method
is that it allows one to obtain a formula for the susceptibility which contains both the itinerant
(or quasi-Fermi-liquid) part and the local spin fluctuation part in one general expression.
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The equation of motion for the relevant Green’s function in the normal state (T > Tc) has
been derived before by some of us [13]. It is given by

ω
〈〈

−ψ pd,↓
k ψ

↑,pd
k+q

∣∣S−
−q

〉〉
= i

2π

(〈
ψ

pd,↓
k ψ

↓,pd
k

〉
−

〈
ψ

pd,↑
k+q ψ

↑,pd
k+q

〉)

− (
εk − εk+q

) 〈〈
−ψ pd,↓

k ψ
↑,pd
k+q

∣∣S−
−q

〉〉

+ 1

N

{(
Jq − tk

) 〈
ψ

pd,↓
k ψ

↓,pd
k

〉

− (
Jq − tk+q

) 〈
ψ

pd,↑
k+q ψ

↑,pd
k+q

〉} 〈〈
S+

q

∣∣S−
−q

〉〉

+ P

N

∑

k′

(
tk′+q − tk′

) 〈〈
ψ

pd,↓
k′ ψ

↑,pd
k′+q

∣∣S−
−q

〉〉
, (4)

where the factor P = (1 + δ)/2 is a doping-dependent constant which arises due to the
narrowing of the band in the so-called Hubbard-I approximation.

In addition to (4) it has been shown [13] that

ω
〈〈

S+
q

∣∣S−
−q

〉〉 =
∑

k′

(
tk′ − tk′+q

) 〈〈
ψ

pd,↓
k′ ψ

↑,pd
k′+q

∣∣S−
−q

〉〉
. (5)

Therefore, if we combine (4) and (5) we get

ω
〈〈

−ψ pd,↓
k ψ

↑,pd
k+q

∣∣S−
−q

〉〉
= i

2π

(〈
ψ

pd,↓
k ψ

↓,pd
k

〉
−

〈
ψ

pd,↑
k+q ψ

↑,pd
k+q

〉)

− (
εk − εk+q

) 〈〈
−ψ pd,↓

k ψ
↑,pd
k+q

∣∣S−
−q

〉〉

+ 1

N

{
(Jq − tk)

〈
ψ

pd,↓
k ψ

↓,pd
k

〉

− (Jq − tk+q)
〈
ψ

pd,↑
k+q ψ

↑,pd
k+q

〉} 〈〈
S+

q

∣∣S−
−q

〉〉

− P

N
ω

〈〈
S+

q

∣∣S−
−q

〉〉
. (6)

The equation of motion (6) makes it possible to derive the expression of the dynamical spin
susceptibility in the normal state [13].

For the superconducting state we need to perform Bogoliubov’s transformation

α
pd,↓
k = ukψ

pd,↓
k − vkψ

↑,pd
−k

α
pd,↑
k = ukψ

pd,↑
k + vkψ

↓,pd
−k .

(7)

Consequently, the spin operator for the superconducting state will be written as

S+
q =

∑

k

(
uk+qukα

↑,pd
k+q α

pd,↓
k + vkuk+qα

↑,pd
k+q α

↑,pd
−k

)

−
∑

k

(
ukvk+qα

pd,↓
−k−qα

pd,↓
k + vkvk+qα

pd,↓
−k−qα

↑,pd
−k

)
. (8)

Therefore in the superconducting state we need to construct additional equations for
the Green’s functions 〈〈−α pd,↓

k α
↑,pd
k+q |S−

−q〉〉, 〈〈−α↑,pd
−k α

↑,pd
k+q |S−

−q〉〉, 〈〈α pd,↓
k α

pd,↓
−k−q|S−

−q〉〉 and

〈〈α↑,pd
−k α

pd,↓
−k−q|S−

−q〉〉. Each of them has to be expressed via the ψ pd,σ
k operators, for example

〈〈
−α pd,↓

k α
↑,pd
k+q

∣∣S−
−q

〉〉
= −ukuk+q

〈〈
ψ

pd,↓
k ψ

↑,pd
k+q

∣∣S−
−q

〉〉

+ vkuk+q

〈〈
ψ

↑,pd
−k ψ

↑,pd
k+q

∣∣S−
−q

〉〉
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− ukvk+q

〈〈
ψ

pd,↓
k ψ

pd,↓
−k−q

∣∣S−
−q

〉〉

+ vkvk+q

〈〈
ψ

↑,pd
−k ψ

pd,↓
−k−q

∣∣S−
−q

〉〉
. (9)

Doing so we get

ω
〈〈

−ψ pd,↓
k ψ

↑,pd
k+q

∣∣S−
−q

〉〉
= i

2π

(〈
ψ

pd,↓
k ψ

↓,pd
k

〉
−

〈
ψ

pd,↑
k+q ψ

↑,pd
k+q

〉)

+
〈〈 [

−ψ pd,↓
k ψ

↑,pd
k+q , H

]∣∣∣ S−
−q

〉〉

tr

+ 1

N

{(
Jq − tk

) 〈
ψ

↓,pd
k ψ

pd,↓
k

〉

− (
Jq − tk+q

) 〈
ψ

pd,↑
k+q ψ

↑,pd
k+q

〉} 〈〈
S+

q

∣∣S−
−q

〉〉

− P

N
ω

〈〈
S+

q

∣∣S−
−q

〉〉
, (10)

and similar expressions can be obtained for 〈〈ψ↑,pd
−k ψ

↑,pd
k+q |S−

−q〉〉, 〈〈ψ pd,↓
k ψ

pd,↓
−k−q|S−

−q〉〉 and

〈〈ψ↑,pd
−k ψ

pd,↓
−k−q|S−

−q〉〉. Equation (10) has the same form as in the normal state ((6)), except
that it is now adapted to be applied for the superconducting state. We note that in the
conventional Fermi-liquid theory the anticommutator rule is given as ckσc†

kσ + c†
kσckσ = 1.

In the strong-coupling limit, however, this rule is modified [18] due to the Coulomb repulsion.
For this reason we have abbreviated the terms which are present in the conventional weak-
coupling Fermi-liquid approach in the superconducting state by the truncated Green’s function
〈〈[−ψ pd,↓

k ψ
↑,pd
k+q , H ]|S−

−q〉〉tr. The other terms on the right-hand side of (10) are due to the spin
modulation S+

q .
With the help of these equations we are able to construct the equations of motion which are

needed to calculate the spin susceptibility in the superconducting state. The first one is given
as
(
ω − Ep + Ek

) 〈〈
α

pd,↓
k α↑,pd

p

∣∣S−
−q

〉〉
= i

2π

(
ukup + vkvp

) (
np − nk

)

+ 1

N

(
ukup + vkvp

) {(
Jq − tp

)
np

− (
Jq − tk

)
nk

} 〈〈
S+

q

∣∣S−
−q

〉〉

+ (Peff − 1)
(
ukup + vkvp

) ω
N

〈〈
S+

q

∣∣S−
−q

〉〉
, (11)

and similar expressions occur for 〈〈α↑,pd
−k α

pd,↓
−p |S−

−q〉〉, 〈〈α↑,pd
−k α

↑,pd
p |S−

−q〉〉 and 〈〈α pd,↓
k α

pd,↓
−p

|S−
−q〉〉. Here we have introduced Peff, which is determined by εk = Pefftk. Note that in the

case of weak-coupling approximation Peff reduce to 1. Furthermore, nk = 〈α pd,↑
k α

↑,pd
k 〉 =

〈α pd,↓
k α

↓,pd
k 〉 are the occupation numbers in the superconducting state. We further make use of

the identity
〈〈

S+
q

∣∣S−
−q

〉〉 = −
∑

k

uk+quk

〈〈
α

pd,↓
k α

↑,pd
k+q

∣∣S−
−q

〉〉

+
∑

k

vk+quk

〈〈
α

pd,↓
k α

pd,↓
−k−q

∣∣S−
−q

〉〉

−
∑

k

uk+qvk

〈〈
α

↑,pd
−k α

↑,pd
k+q

∣∣S−
−q

〉〉

+
∑

k

vk+qvk

〈〈
α

↑,pd
−k α

pd,↓
−k−q

∣∣S−
−q

〉〉
. (12)
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With help of this relation the susceptibility is calculated as

χ+,−(q, ω) = χ
+,−
0 (q, ω)

1 + Jqχ
+,−
0 (q, ω)+
(q, ω)+ Z(q, ω)

, (13)

where the superexchange interaction between the copper spins is Jq = J1(cos qx + cos qy),
with J1 being the superexchange interaction parameter between the nearest-neighbour copper
spins. By closer examination of (13) it is evident that the spin susceptibility is fundamentally
different form the conventional RPA [1–5] and the lower Hubbard sub-band case [12].

The function χ+,−
0 (q, ω) is a BCS-like susceptibility and 
(q, ω) is a function which

results from strong correlation effects and has been determined [15] before. It is given by


(q, ω) = P

N

∑

k

(
xkxk+q + zkzk+q

) tk fk − tk+q fk+q

ω + i� + Ek − Ek+q

+ P

N

∑

k

(
ykyk+q + zkzk+q

) tk (1 − fk)− tk+q
(
1 − fk+q

)

ω + i� − Ek + Ek+q

+ P

N

∑

k

(
xkyk+q − zkzk+q

) tk fk − tk+q
(
1 − fk+q

)

ω + i� + Ek + Ek+q

+ P

N

∑

k

(
ykxk+q − zkzk+q

) tk (1 − fk)− tk+q fk+q

ω + i� − Ek − Ek+q
. (14)

The function Z(q, ω) has its origin in the fast fluctuation of the localized spins and it is
calculated as

Z(q, ω) = (Peff − 1)

N

∑

k

(
xkxk+q + zkzk+q

) ω + i�

ω + i� + Ek − Ek+q

+ (Peff − 1)

N

∑

k

(
yk yk+q + zkzk+q

) ω + i�

ω + i� − Ek + Ek+q

+ (Peff − 1)

N

∑

k

(
xk yk+q − zkzk+q

) ω + i�

ω + i� + Ek + Ek+q

+ (Peff − 1)

N

∑

k

(
ykxk+q − zkzk+q

) ω + i�

ω + i� − Ek − Ek+q
, (15)

where the functions xk = u2
k = 1

2 (1 + εk/Ek), yk = v2
k = 1

2 (1 − εk/Ek) and zk = ukvk =
�k/(2Ek) are the conventional coherence factors. Furthermore, � is an artificially introduced

damping constant and Ek =
√
(εk − μ)2 +�2

k is the energy of Bogoliubov’s quasiparticles
in the superconducting state. The energy dispersion in the tight-binding approximation for a
quadratic two-dimensional lattice is given as

εk = Peff
[
2t1(cos kx + cos ky)+ 4t2(cos kx cos ky)

+ 2t3
(
cos 2kx + cos 2ky

) + 2t4
(
cos 2kx cos ky + cos 2ky cos kx

)

+ 4t5
(
cos 2kx cos 2ky

)]
, (16)

where the model parameters t1, t2 . . . correspond to nearest-neighbour (NN), next-nearest-
neighbour (NNN), and further distant hopping, respectively. For simplicity we do not consider
hopping between layers. Further we note that at optimal doping the number of doped holes per
unit cell in one CuO2-layer is δ � 0.165. In bilayer compounds therefore we have δ = 0.33
with a corresponding factor Peff = P = (1 + δ)/2 � 0.7 near optimal doping.

Let us consider the impact of the new functional corrections 
(q, ω) and Z(q, ω) on the
spin susceptibility. In figure 1 we show the real part of the susceptibility along with results for

6
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Figure 1. Real part of the spin susceptibility
χ+,−(q, ω) (solid curve) over the Brillouin zone
for YBa2Cu3O7 at T = 0.2Tc. The results for
Z(q, ω) = 0 (dashed curve) and 
(q, ω) = 0
(dotted curve) are also shown. The corresponding
model parameters are summarized in table 1.

Figure 2. Real part of the BCS susceptibility
χ

+,−
0 (q, ω) (solid curve) and the functions 
(q, ω)

(dotted curve), Z(q, ω) (dashed curve) along the
Brillouin zone for YBa2Cu3O7 at T = 0.2Tc. The
corresponding model parameters are summarized in
table 1.

the cases Z(q, ω) = 0 and 
(q, ω) = 0. The immediate consequence of these corrections
is that the susceptibility becomes suppressed around (π, π). This can be understood, for
example, by the examination of the functional form of 
(q, ω), which in first approximation
is 
(q, ω) � δ/P − tkχ

+,−
0 (q, ω). This relation can be verified by an inspection of figure 2,

where we have plotted the real part of the BCS susceptibility χ+,−
0 (q, ω) along with the real

parts of
(q, ω) and Z(q, ω). Therefore the function
(q, ω) is indeed a significant correction
for the spin susceptibility. Another important consequence which can be seen immediately from
the figure concerns the Z(q, ω) function. In the special limit q → 0, ω = 0, the real part of
this function can be approximated as Z(q → 0, ω = 0) � P = 0.7 states eV−1. This value
is comparable to χ+,−

0 (q → 0, ω = 0) and therefore of importance for the calculation of the
Knight shift.

Furthermore, we would like to point out that our model for the spin susceptibility (solid
line in figure 1) is in remarkably good agreement with the RPA result [3, 6]. However, in the
RPA theory a very large value of the interaction parameter is used: Ue � 2t1 � 400 meV. In
our model, which includes strong correlation effects, we need only J1 � 0.5t1 � 100 meV to
arrive at the same absolute values for the spin susceptibility (≈4 states eV−1 around (π, π)).

The mechanism that causes the pairing in cuprates is still being debated and the origin
of the interactions described by Vi j in (1) are unknown. Therefore we introduce the
superconducting gap function �k phenomenologically into our model. Assuming a dx2−y2

pairing symmetry it is given by

7
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Figure 3. Fermi surfaces of YBa2Cu3O7 (dashed) and
Bi2Sr2CaCu2O8 (solid) adopted from fits to photoemission
experiments [20, 21]. The corresponding model parameters are
summarized in table 1.

Table 1. Tight-binding parameters for YBa2Cu3O7 and Bi2Sr2CaCu2O8. The values for the
hopping parameters are taken from [20] and [21]. The model-specific constant is Peff � 0.7.

Parameters (meV)

μ Pefft1 Pefft2 Pefft3 Pefft4 Pefft5

YBa2Cu3O7 119 147 −36.5 −2.4 32.4 −1.8
Bi2Sr2CaCu2O8 49.4 73.9 −12.0 16.3 6.3 −11.7

�k(T ) = �0

2

(
cos kx − cos ky

)
tanh

(
1.76

√
Tc/T − 1

)
, (17)

where �0 is considered to be a model parameter. We would like to point out that this formula
is a fit to the solution of the Eliashberg strong-coupling gap equation.

In the forthcoming sections we will analyse several experiments in the superconducting
state of the materials YBa2Cu3O7 and Bi2Sr2CaCu2O8. We would like to summarize at this
point the parameters which we used to perform our analysis. The tight-binding hopping
parameters (Pefft1 . . . Pefft5) are adopted from fits to the measured Fermi surfaces of these two
materials, summarized in table 1. The corresponding Fermi surfaces are shown in figure 3.
Note that they are quite different for these two materials.

Other model parameters include the gap parameter which is assumed to be of the order of
�0 � 10–30 meV and the superexchange interaction parameter of the copper spins, which is
J1 � 100–140 meV. In our analysis we will proceed as follows. We assume the Fermi surface
as given from fits to photoemission data and thus fix the values of the hopping parameters for
both materials. Based on this assumption we analyse neutron scattering experiments, which
allows us to determine the values of the model parameters �0 and J1. Then we move to NMR
experiments and calculate the temperature dependences of the spin shift, spin–spin relaxation
and spin–lattice relaxation rates, utilizing the parameter values obtained before. Thus in our
analysis we fix our parameter values by analysing four different types of experiment. The
fundamental difference between our description and the conventional RPA case [1–5] is that we
do not need an effective interaction parameter Ue (sometimes this parameter is also called J );
instead we use at least partially known experimental parameters, the gap and the superexchange
parameter. In the RPA theory a fit to experiments is only possible if unusually large (even larger
than the bandwidth) values for the effective interaction parameter are used. This means that the
RPA description is not self-consistent. In our model, however, the spin susceptibility contains

8
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two additional functions: 
(q, ω) and Z(q, ω). Together with the superexchange interaction
parameter J1 they provide a reasonable quantitative description of Ue.

3. Neutron scattering analysis

Magnetic inelastic neutron scattering experiments directly probe the imaginary part of
the dynamical spin susceptibility Imχ+,−(q, ω). The experiments indicate a sharp
resonance in the magnetic excitation spectrum of optimally doped YBa2Cu3O7 [22, 23] and
Bi2Sr2CaCu2O8 [24, 25] compounds at a frequency ω � 41 meV, near the antiferromagnetic
wavevector Q = (π, π). Consequently, there should be a large peak in the imaginary
part of the spin susceptibility Imχ+,−(Q, ω) at the same frequency. In the conventional
weak-coupling scenario this feature was studied extensively by various authors [7–9], who
connected the appearance of the resonance peak to a collective spin-density wave mode
formation. Special experimental features like the effect of orthorhombic distortions [26]
and bilayer splitting [27] on the magnetic excitations were also studied theoretically [9, 28]
within the weak-coupling model. In the strong-coupling limit previous calculations were
carried out by some of us [15] and the dependence of the position of the resonance peak
on the model parameters was studied extensively. We will not repeat these considerations
here. Note only that within our model the position of the neutron scattering resonance peak
is determined mainly by the magnitude of the superconducting gap �0 and the superexchange
parameter J1. In particular, the superconducting gap parameter �0 determines the size of the
transparency window in Imχ+,−(q, ω), which is approximately ω � 2�0. In this region
a sharp delta-like peak appears in the imaginary part of the susceptibility if the resonance
condition 1 + Jq Reχ+,−

0 (q, ω) + Re
(q, ω) + Re Z(q, ω) = 0 (see (13)) is fulfilled. Our
calculations indicate that for YBa2Cu3O7 (Bi2Sr2CaCu2O8) the value of the gap parameter
should be�0 = 24 meV (25 meV). The corresponding values of the superexchange parameter
are determined as J1 = 90 meV (110 meV). For these values the resonance condition is
fulfilled and a clear peak appears in the imaginary part of the susceptibility near ω � 41 meV,
for both materials. In figure 4 we display the calculated momentum and frequency dependence
of the imaginary part of the susceptibility. Note that the height of the resonance peak depends
on the artificially introduced quasiparticle damping �; therefore the values of Imχ+,−(q, ω)
in figure 4 are arbitrary. Furthermore, the experimentally reported [29] downward dispersion
branch for YBa2Cu3O7 with respect to ω is reproduced by our model calculations, as can be
seen from an inspection of figure 4 (top). We would like to point out that for the Bi2Sr2CaCu2O8

compound we do not find a similar dispersion branch. There are, however, no experiments
available which would allow a comparison.

Let us now turn to the examination of magnetic excitations at lower frequency, where
measurements [30] in the YBaCuO compounds indicate well defined incommensurability in
the magnetic excitation spectrum. For the material Bi2Sr2CaCu2O8, however, the data sets [31]
are inconclusive due to experimental difficulties. Here we report significant differences in
the low-frequency excitations for the materials YBa2Cu3O7 and Bi2Sr2CaCu2O8. Similar
conclusions were reached previously by Norman [32] in the conventional weak-coupling
scenario. In figure 5 we show an intensity plot of the imaginary part of the susceptibility
around the antiferromagnetic wavevector Q calculated for ω = 30 meV, for both materials.
By examination of the figure we conclude that for YBa2Cu3O7 the model calculations match
the experimental observation [30] of incommensurability. For the Bi2Sr2CaCu2O8 compound,
however, our results indicate that the incommensurability of the magnetic excitations is much
weaker than in YBa2Cu3O7 due to the difference in the Fermi surface topology. This result
could be tested by further experiments.

9
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Figure 4. Calculated frequency and momentum dependence of Imχ+,−(q, ω) for YBa2Cu3O7

(left) and Bi2Sr2CaCu2O8 (right). The model parameters for the two compounds YBa2Cu3O7

(Bi2Sr2CaCu2O8) are �0 = 24 meV (25 meV) and J1 = 90 meV (110 meV). Furthermore,
the tight-binding parameters are given in table 1.

Figure 5. Intensity plot of the imaginary part of the susceptibility Imχ+,−(q, ω) near Q for
YBa2Cu3O7 (left) and Bi2Sr2CaCu2O8 (right) for ω = 30 meV. Other model parameters are
the same as in figure 4.

4. NMR analysis

4.1. Knight shift

In order to calculate the Knight shift in the superconducting state we need to calculate the
susceptibility in the limit q → 0, ω = 0. The BCS susceptibility χ+,−

0 (q, ω) converts to the
Yosida result [33]

χ
+,−
0 (q → 0, ω = 0) � Pβ

N

∑

k

∂ f (Ek)

∂Ek
= χP . (18)

The functions 
(q, ω) and Z(q, ω) are approximated as


(q → 0, ω = 0) � 1

N

∑

k

f (Ek)− Pβ

N

∑

k

tk
∂ f (Ek)

∂Ek

� δ

P
− Pβ

N

∑

k

tk
∂ f (Ek)

∂Ek
(19)

and

Z(q → 0, ω = 0) � P. (20)

10



J. Phys.: Condens. Matter 19 (2007) 116209 T Mayer et al

Figure 6. Temperature dependence of the
reduced spin shift in YBa2Cu3O7 for no exchange
interaction (J1 = 0 eV). The tight-binding
parameters used are given in table 1. The
experimental points are taken from Barrett et al
[34].

In the long-wave limit therefore the susceptibility is given by the simple expression

χ+,−(q → 0, ω = 0) = χP

1 + P + δ/P + (2J1 − μ/P) χP
. (21)

With the help of this relation the spin shift can be calculated according to

63 Ks⊥ = (A⊥ + 4B) χ+,−(q → 0, ω = 0), (22)

where A⊥ and B represents the appropriate hyperfine coupling constants. Note that this
expression refers to the spin contribution to the magnetic shift. In addition there is an orbital
(chemical) shift which, however, is independent of the temperature. We will calculate the
temperature dependence of the normalized spin shifts Ks⊥(T )/Ks⊥(Tc). In this way the
hyperfine coupling constants in (22) cancel out, simplifying our analysis. Furthermore, note
that the quasiparticle damping is � → 0+.

It is also of interest, however, to determine the absolute values of the spin shift for
comparison with experiments. For this reason we have calculated the values of the spin shift at
T = Tc = 90 K. We must keep in mind that the absolute values of the spin shift scale with the
values of hyperfine coupling constants, which are not directly accessible by experiments. For
the values B � 0.4 μeV, A⊥ � 0.75B we get Ks⊥(T = 90 K) = 0.24%. The difference from
the experimentally reported [34] value Ks⊥(T = 90 K) = (0.30 ± 0.02)% is explainable with
a 20% uncertainty of the hyperfine fields. We would also like to point out that if we drop our
correction function Z(q, ω) we get Ks⊥(T = 90 K) = 0.50%, which confirms the importance
of this correction.

In figure 6 we display the calculated temperature dependence of the normalized spin
shifts for YBa2Cu3O7, along with the experimental points of Barrett et al [34], for vanishing
superexchange interaction J1 = 0 eV and different values of the gap parameter�0. We observe
that below Tc the spin shifts depend strongly on the magnitude of the gap parameter �0. This
behaviour has also been found for the RPA susceptibility [5, 6].

Next we consider how the spin shift depends on the superexchange interaction J1.
In figure 7 the calculated spin shifts for different values of the superexchange interaction
parameter J1 are shown. We see that the temperature dependence of the Knight shift does
not significantly change by adjusting the parameter J1. Also, contrary to the RPA scenario, the
superexchange coupling J1 reduces the rapid decrease of the Knight shift. By analysis of the
figure we conclude that the optimal set of parameters to describe the experimentally observed
temperature dependence of the spin shift for YBa2Cu3O7 is �0 = 24 meV and J1 = 90 meV

11



J. Phys.: Condens. Matter 19 (2007) 116209 T Mayer et al

Figure 7. Temperature dependence of the reduced
spin shift in YBa2Cu3O7. The energy gap is�0 =
24 meV. The tight-binding parameters are given
in table 1. The experimental points are taken from
Barrett et al [34].

Figure 8. Temperature dependence of the reduced
spin shift in Bi2Sr2CaCu2O8. The parameters
used are �0 = 24 meV and J1 = 110 meV.
Furthermore, the tight-binding parameters are
summarized in table 1. The experimental points
are taken from Ishida et al [35].

for the given Fermi surface. These values are in perfect agreement with those determined from
the fit to neutron scattering experiments in the previous section.

Let us now turn to the examination of the spin shift in the Bi2Sr2CaCu2O8 compound.
Experimental results indicate a similar behaviour as in the YBa2Cu3O7 material: the spin shift
decreases rapidly upon entering the superconducting state. The calculated spin shifts also show
a similar dependence on the model parameters �0 and J1. We will not repeat the analysis of
these dependences and show instead in figure 8 the final result of our calculations for the spin
shift in Bi2Sr2CaCu2O8 along with the experimental points of Ishida et al [35]. The parameters
used for the calculation are�0 = 24 meV and J1 = 110 meV. We notice that again these values
almost coincide with those determined by the analysis of neutron scattering experiments in this
compound. By examination of the figure we see that the calculated temperature dependence of
spin shift gives a satisfactory fit to the experimental data.

Finally, we conclude that it is possible to account for both the neutron scattering resonance
peak and the temperature dependence of the spin shift in the superconducting state of
YBa2Cu3O7 and Bi2Sr2CaCu2O8 consistently within the same set of parameters for each
material. Next, we calculate the temperature dependence of the dynamical NMR quantities,
the spin–spin and spin–lattice relaxation rates.

12
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Figure 9. Temperature dependence of the spin–spin relaxation rate in YBa2Cu3O7 for no exchange
interaction (J1 = 0 eV). Further parameters are given in table 1. The experimental points are taken
from Stern et al [37].

4.2. Spin–spin relaxation

The nuclear spin–spin relaxation rate is calculated from the expression [36]

T −2
2G = 0.69

mh̄2

[
1

N

∑

q

63 F‖(q)2(Reχ+,−(q, ω = 0))2

−
(

1

N

∑

q

63 F‖(q)Reχ+,−(q, ω = 0)

)2]
, (23)

where 63 F‖(q) = [A‖ + 2B(cos(qx) + cos(qy))]2 is the hyperfine form factor and m is a
constant dependent on the method used (m = 8 for NMR and m = 4 for NQR measurements).
The values of the hyperfine coupling constants are taken as B � 0.4 μeV and A‖ �
−4B . The spin–spin relaxation rate strongly depends on the real part of the susceptibility
Reχ+,−(q, ω = 0) near the antiferromagnetic wavevector Q. We determine the temperature
dependence of the normalized spin–spin relaxation rate T −1

2G (T )/T −1
2G (Tc) in the same way as

we analysed the Knight shifts. The absolute values of the spin–spin relaxation were calculated
at T = Tc = 90 K. For the above-mentioned values of the hyperfine coupling constants
we get T −1

2G (T = 90 K) = 7.4 m s−1. The difference from the experimental [37] value
T −1

2G (T = 90 K) = 10 m s−1 could again be explained by a 20% uncertainty of the hyperfine
fields. Note that for the evaluation of the spin–spin relaxation, the real part of the susceptibility
is calculated by taking the quasiparticle damping � → 0+. Otherwise, due to the behaviour
of the coherence factors, a large increase in the spin–spin relaxation rate occurs near Tc upon
entering the superconducting state, as has been discussed in [36].

In figure 9 we display the calculated spin–spin relaxation rates for YBa2Cu3O7 along with
experimental points from Stern et al [37] for no superexchange interaction J1 = 0 eV. We
observe that the results show a similar temperature dependence as in the RPA approach [6].
Generally, the temperature dependence of the spin–spin relaxation rate is less sensitive to the
change of the gap parameter than the spin shift. We see that for the hypothetical case of no
interaction we can account for the observed temperature dependence of the spin–spin relaxation
rate. Next we wish to study the behaviour of the spin–spin relaxation for different values of the
superexchange interaction parameter J1.

13
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Figure 10. Temperature dependence of the spin–spin relaxation rate in YBa2Cu3O7. The energy
gap is �0 = 22 meV. The corresponding tight-binding parameters are summarized in table 1. The
experimental points are taken from Stern et al [37].

In figure 10 the temperature dependence of the spin–spin relaxation rate is shown for
various values of the superexchange interaction parameter J1. We see that we get a reasonable
agreement with the data using the parameter values �0 = 22 meV and J1 = 90 meV. The
magnitudes of these parameters are in agreement with those obtained by the analysis of neutron
scattering and NMR spin shift experiments for YBa2Cu3O7.

Concerning the Bi2Sr2CaCu2O8 compound our calculations indicate a very similar
behaviour as in YBa2Cu3O7, if we utilize the parameter values from the previous sections
�0 = 24 meV and J1 = 110 meV. Unfortunately the spin–spin relaxation rate has not yet been
measured in Bi2Sr2CaCu2O8, thus we have no basis for comparison with experiments.

4.3. Spin–lattice relaxation

The nuclear spin–lattice relaxation rate is calculated according to the expression [38]

αT −1
1β ∝ T

N

∑

q,β ′

αFβ ′(q) lim
ω→0

Imχ+,−(q, ω)
ω

, (24)

where β denotes the field direction and β ′ are the directions orthogonal to the field.
Furthermore, α designates the nucleus under consideration.

In order to calculate the imaginary part of the spin susceptibility Imχ+,−(q, ω → 0) we
introduced a finite quasiparticle broadening � = 3kBTc � 2 meV, following the analysis of
Bulut and Scalapino [5]. Furthermore, the form factors in (24) are given by

63 Fβ(q) = [
Aβ + 2B

(
cos(qx)+ cos(qy)

)]2
,

17 Fβ(q) = 2
(
C2
β1

cos2(qx/2)+ C2
β2

cos2(qy/2)
)
.

(25)

The values of the hyperfine coupling constants are taken as B � 0.4 μeV, A‖ � −4B ,
A⊥ � 0.75B , C‖ � 0.6B , and C⊥ � 0.32B .

In figure 11 we display the calculated spin–lattice relaxation rates for YBa2Cu3O7 along
with the experimental points of Takigawa et al [39], when the superexchange interaction is
J1 = 0 eV. We observe that the temperature dependence varies strongly when adjusting the
gap parameter �0. As for the spin shift and spin–spin relaxation rate calculations it is possible
to fit the experimental data even without taking into account the interaction.
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Figure 11. Temperature dependence of the spin–lattice relaxation rate in YBa2Cu3O7 for no
exchange interaction (J1 = 0 eV). Corresponding tight-binding parameters are given in table 1.
The experimental points are taken from Takigawa et al [39].

Figure 12. Temperature dependence of the spin–lattice relaxation rate in YBa2Cu3O7. The energy
gap is �0 = 22 meV. The tight-binding parameters are given in table 1. The experimental points
are taken from Takigawa et al [39].

Next we consider the effect of the superexchange parameter J1. In figure 12 the spin–lattice
relaxation rate is shown for different values of J1. We note that upon changing the values of
J1 the spin–lattice relaxation rate T −1

1c changes in the same way as it does in the RPA case if
the parameter value of the effective Coulomb interaction Ue is changed. Namely, the parameter
J1 has no significant impact on the temperature dependence of the spin–lattice relaxation rate
in the superconducting state. Upon further examination of the figure we see that we get a
reasonable agreement with experimental observation using the parameter values�0 = 22 meV
and J1 = 90 meV. These parameters agree with those we determined before in the previous
sections.

Next we examine the spin–lattice relaxation rate in the Bi2Sr2CaCu2O8 compound. Upon
changing the model parameters �0 and J1 the spin–lattice relaxation behaves much the same
way as in YBa2Cu3O7. We show in figure 13 the final result of our calculations of the spin–
lattice relaxation rate in Bi2Sr2CaCu2O8, along with the experimental points of Ishida et al
[35] (squares) and Takigawa et al [40] (circles). The parameters used for the calculation are
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Figure 13. Temperature dependence of the spin–lattice relaxation rate in Bi2Sr2CaCu2O8. The
parameters are �0 = 23 meV and J1 = 110 meV. Furthermore, the tight-binding parameters are
given in table 1. The experimental points are taken from Ishida et al [35] (squares) and Takigawa
et al [40] (circles).

Figure 14. Calculated temperature dependence of the anisotropy ratios 63T −1
1c /

17T −1
1c and

63T −1
1ab/

63T −1
1c in YBa2Cu3O7 (solid lines). The data from [42] are denoted by squares. For

comparison we also included data from [43] for YBa2Cu4O8 (circles). The model parameters are
�0 = 22 meV and J1 = 90 meV.

�0 = 23 meV and J1 = 110 meV. Note that the values of these parameters are again almost
the same as those that we used before when we analysed the neutron scattering and spin shift
experiments. A particularly interesting feature can be found when comparing the spin–lattice
relaxation rates in YBa2Cu3O7 and Bi2Sr2CaCu2O8 at low temperatures. A close inspection of
the corresponding figures (figures 12 and 13) shows that in the former case 63T −1

1c (T ) practically
vanishes at temperatures T < 20 K, while in the latter case the relaxation rate seems to vanish
only at T � 0 K. Note that both of these dependences are reproduced by the model calculations.

We are also interested in the anisotropy ratios 63T −1
1ab/

63T −1
1c and 63T −1

1c /
17T −1

1c measured
in YBa2Cu3O7. Experimental evidence [41–43] points towards a field dependence of these
quantities. Our theoretical results have to be compared with data in zero or small external
fields. We display the calculated anisotropy ratios in figure 14. The experimental points
for 63T −1

1c /
17T −1

1c are from Martindale et al [41], whereas those for 63T −1
1ab/

63T −1
1c are taken

from Takigawa et al [42] (squares). For comparison we also plotted the anisotropy in the
YBa2Cu4O8 compound (circles) measured by Bankay et al [43]. For the calculation we
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used the same parameters as before, �0 = 22 meV and J1 = 90 meV. We see that we
can account for the anisotropy ratio 63T −1

1ab/
63T −1

1c , but it is not possible to reproduce the
temperature dependence of the ratio 63T −1

1c /
17T −1

1c . Our results for the weak-field anisotropy
ratio 63T −1

1ab/
63T −1

1c for YBa2Cu3O7 agree with the weak-coupling calculations of Bulut and
Scalapino [5], which are based on a square Fermi surface with nearest-neighbour hopping
only. However, our calculations disagree with the analysis of Mack et al [6], where the
Fermi surface for YBa2Cu3O7 was assumed to be quite different (similar to that which we
used here to describe the Bi2Sr2CaCu2O8 compound). Therefore we conclude that the Fermi
surface topology plays an important role in the description of the weak-field anisotropy ratio
63T −1

1ab/
63T −1

1c . Note that the experimentally reported weak-field ratio 63T −1
1c /

17T −1
1c could also

not be reproduced within previous weak-coupling RPA calculations [5, 6].

5. Conclusions

In summary, we have determined the spin susceptibility in cuprates within a special Hubbard
model which includes strong correlation effects. It has been found that the susceptibility
in the strong-coupling limit is different from the standard Pauli–Lindhard formula. In
particular, two correction functions were determined in the superconducting state. The first
one, 
(q, ω), found originally by Hubbard and Jain [14] in the normal state, originates from
the anticommutator rule which is modified due to the Coulomb repulsion, whereas the function
Z(q, ω) has its origin in the fast fluctuations of the localized spins and was previously discussed
by Zavidonov and Brinkmann [12] for the normal state.

We analysed inelastic neutron scattering and NMR data in the superconducting state of the
optimally doped high-Tc superconductors YBa2Cu3O7 and Bi2Sr2CaCu2O8. In our analysis we
have taken into account the experimentally measured topology of the Fermi surface, which is
quite different for these two materials. We found that on the whole the results within the strong-
coupling and weak-coupling limits agree with each other. Based on the results of our numerical
calculations we conclude that strong correlation effects, i.e., the effect of the functions
(q, ω),
Z(q, ω) on the susceptibility can be modelled in the weak-coupling approach by an appropriate
redefinition [28] of the effective Coulomb interaction parameter Ue. In particular, the non-
physical value of Ue in the weak-coupling limit (sometimes Ue � t) becomes understandable.
In terms of our model, it can be explained quantitatively by the superexchange interaction Jq

and the two additional functional corrections 
(q, ω) and Z(q, ω).
In the framework of the singlet-correlated band model we found it possible to describe

the available experimental data in the optimally doped YBa2Cu3O7 and Bi2Sr2CaCu2O8

compounds within one set of model parameters for each material. These optimal sets of
parameters are given by �0 = 23 meV (±5%), J1 = 90 meV for YBa2Cu3O7 and �0 =
24 meV (±5%), J1 = 110 meV for Bi2Sr2CaCu2O8. The only experiment which could not
be reproduced is the temperature dependence of the weak-field anisotropy ratio 63T −1

1c /
17T −1

1c
in YBa2Cu3O7. As concerns the Bi2Sr2CaCu2O8 material, more experimental data would be
desirable to test our model further, for example low-energy inelastic neutron scattering and
spin–spin relaxation rate measurements.
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